Get epidemic costs from a DAEDALUS model run
Usage
get_costs(
x,
summarise_as = c("none", "total", "domain"),
productivity_loss_infection = 1
)Arguments
- x
A
<daedalus_output>object from a call todaedalus().- summarise_as
A string from among "none", "total", or "domain", for how the costs should be returned. Select "none", the default, for the raw costs along with overall and domain-specific totals; "total" for the overall cost, and "domain" for the total costs per domain; the domains are 'economic', 'education', and 'life years'.
- productivity_loss_infection
A single number in the range \([0, 1]\) giving the loss in productivity associated with symptomatic infection. Currently defaults to 1.0 for compatibility with earlier function versions.
Details
The total cost in million dollars is returned as total_cost. This is
comprised of the following costs.
Economic costs
A three element list of economic_cost_total, the total costs from pandemic
impacts on economic sectors, including both costs of lost gross value added
(GVA) due to pandemic-control restrictions or closures
(economic_cost_closures), and pandemic-related absences due to illness and
death (economic_cost_absences).
Educational costs
A three element list of education_cost_total, the total costs from pandemic
impacts on education due to pandemic-control restrictions or closures
(education_cost_closures), and pandemic-related absences due to illness and
death (education_cost_absences).
Examples
output <- daedalus("Canada", "influenza_1918")
get_costs(output)
#> $total_cost
#> [1] 1469908
#>
#> $economic_costs
#> $economic_costs$economic_cost_total
#> [1] 29756.42
#>
#> $economic_costs$economic_cost_closures
#> [1] 0
#>
#> $economic_costs$economic_cost_absences
#> [1] 29756.42
#>
#> $economic_costs$sector_cost_closures
#> [1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> [39] 0 0 0 0 0 0 0
#>
#> $economic_costs$sector_cost_absences
#> [1] 507.31406 45.92487 897.03024 365.65928 197.76757 533.77293
#> [7] 38.32229 159.72376 197.01777 170.55792 236.51218 82.10726
#> [13] 156.96928 119.57756 191.16098 227.73294 98.41081 64.25801
#> [19] 247.65010 290.94969 181.08177 263.77509 636.12711 161.68246
#> [25] 2082.19999 3711.38190 814.85766 25.90400 157.59367 360.15513
#> [31] 141.91605 787.15257 299.19807 566.51980 586.37225 2286.13777
#> [37] 3941.55682 1417.93072 1043.81615 2288.65292 1897.38174 2522.06199
#> [43] 270.38851 334.04600 47.49147
#>
#>
#> $education_costs
#> $education_costs$education_cost_total
#> [1] 1897.382
#>
#> $education_costs$education_cost_closures
#> [1] 0
#>
#> $education_costs$education_cost_absences
#> [1] 1897.382
#>
#>
#> $life_value_lost
#> $life_value_lost$life_value_lost_total
#> [1] 1438254
#>
#> $life_value_lost$life_value_lost_age
#> 0-4 5-19 20-64 65+
#> 274625.5 597520.1 375965.7 190142.4
#>
#>
#> $life_years_lost
#> $life_years_lost$life_years_lost_total
#> [1] 31232438
#>
#> $life_years_lost$life_years_lost_age
#> 0-4 5-19 20-64 65+
#> 5963637 12975463 8164294 4129043
#>
#>