Get epidemic costs from a DAEDALUS model run
Usage
get_costs(
x,
summarise_as = c("none", "total", "domain"),
productivity_loss_infection = 1
)
Arguments
- x
A
<daedalus_output>
object from a call todaedalus()
.- summarise_as
A string from among "none", "total", or "domain", for how the costs should be returned. Select "none", the default, for the raw costs along with overall and domain-specific totals; "total" for the overall cost, and "domain" for the total costs per domain; the domains are 'economic', 'education', and 'life years'.
- productivity_loss_infection
A single number in the range \([0, 1]\) giving the loss in productivity associated with symptomatic infection. Currently defaults to 1.0 for compatibility with earlier function versions.
Details
The total cost in million dollars is returned as total_cost
. This is
comprised of the following costs.
Economic costs
A three element list of economic_cost_total
, the total costs from pandemic
impacts on economic sectors, including both costs of lost gross value added
(GVA) due to pandemic-control restrictions or closures
(economic_cost_closures
), and pandemic-related absences due to illness and
death (economic_cost_absences
).
Educational costs
A three element list of education_cost_total
, the total costs from pandemic
impacts on education due to pandemic-control restrictions or closures
(education_cost_closures
), and pandemic-related absences due to illness and
death (education_cost_absences
).
Examples
output <- daedalus("Canada", "influenza_1918")
get_costs(output)
#> $total_cost
#> [1] 1644627
#>
#> $economic_costs
#> $economic_costs$economic_cost_total
#> [1] 29545.8
#>
#> $economic_costs$economic_cost_closures
#> [1] 0
#>
#> $economic_costs$economic_cost_absences
#> [1] 29545.8
#>
#> $economic_costs$sector_cost_closures
#> [1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> [39] 0 0 0 0 0 0 0
#>
#> $economic_costs$sector_cost_absences
#> [1] 537.11094 46.96799 951.22060 368.92204 205.81375 534.23991
#> [7] 38.23981 165.42156 201.57795 172.54020 237.92711 82.37185
#> [13] 161.14994 120.76015 192.11511 232.27379 100.03347 63.77370
#> [19] 246.41226 291.96819 187.33491 262.89409 632.68780 162.51214
#> [25] 2193.78229 3553.29445 800.17533 26.72845 159.12932 351.26550
#> [31] 136.53342 756.61756 300.86158 564.65716 589.36027 2271.80182
#> [37] 3891.57226 1397.03002 1014.27153 2265.94110 1810.27842 2426.75522
#> [43] 257.93605 342.23631 49.58143
#>
#>
#> $education_costs
#> $education_costs$education_cost_total
#> [1] 1810.278
#>
#> $education_costs$education_cost_closures
#> [1] 0
#>
#> $education_costs$education_cost_absences
#> [1] 1810.278
#>
#>
#> $life_value_lost
#> $life_value_lost$life_value_lost_total
#> [1] 1613271
#>
#> $life_value_lost$life_value_lost_age
#> 0-4 5-19 20-64 65+
#> 290122.8 648162.7 444888.8 230096.2
#>
#>
#> $life_years_lost
#> $life_years_lost$life_years_lost_total
#> [1] 35033019
#>
#> $life_years_lost$life_years_lost_age
#> 0-4 5-19 20-64 65+
#> 6300170 14075194 9660994 4996661
#>
#>